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( Abstract

It is shown that the basis in a class of linear programs arising from material

requirements planning can be triangularized. This allows for efficient adaptation of

the Simplex Method similar to those for network problems. It also suggests that for

finite-loading (i.e. capacitated) MRP, a decomposition approach exploiting both

subproblem structure and parallel processing can be effective for handling complex

problems in multiproduct, multistage, multiperiod production systems.)
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1. The Single-Product Infinite-Loading MRP Model

The manufacturing of a product usually consists of its assembly from parts

which are themselves the products of other parts. A schematic representation of a

product structure (also known as a Bill of Materials) is examplified in Figure 1.

Each oblong represents an item indexed by the number in bold type. A basic

assumption of the model studied in this paper is that each item except the first

contributes directly to the production of only one other item, known as its parent.

We shall call this the tree property of the product structure. Item 1 is the finished

product. The number of units of an item required per unit production of its parent is

given in parenthesis in the figure.

In Material Requirements Planning (MRP), the net demands for each item in

every time period over a finite planning horizon are given. The purpose is to

determine the levels of production and inventory for the items so as to meet the

demands at minimum costs. For the present purpose, we assume the cost function to

be linear in the production and inventory variables. Since the assembly of an item

takes time, a lead time in units of time periods is specified for each item. We shall

show that with many products competing for limited production capacities, the

planning problem can be modeled as large, structured linear programs. The

dimensions and complexities of such problems make their routine application either

infeasible or very expensive with conventional LP software. In this paper, we

demonstrate certain properties of the problems that may lead to more efficient

solution techniques.

We first consider the case with a single finished product (Item 1) and no

production capacity or inventory storage limits on any item. The absence of

capacity constraints is commonly known as infinite-loading in the MRP literature.

We call this the Single-Product Infinite-Loading MRP model (SPILMRP). The

more important case of multiproduct, capacitated (finite-loading) MRP will be

discussed later.



2. The Linear Programming Formulation

To formulate the above MRP problem as an LP, the following terminology is

used.

Given the parameters:

N = number of items in the product structure;

T = number of time periods in the planning horizon;

dit = (exogenous) demand of item i in period t;

hit = unit holding cost for item i inventory in period t;

cit= unit production cost for item i in period t;

j(i)= index of parent of item i (i l);

mi = number of units of item i required per unit of its parent item

j (i);

Li = production lead time for item i;

define the variables:

Pit= number of units of item i to be completed at the beginning of

period t;

Iit= number of units of item i in inventory at the end of period t;

where i = 1,...,N and t = 1,...,T throughout.

Note that the definition of Pit does not imply that production is instanteneous

since lead times are allowed. The convention used here to account for material

balancing is that demand be fulfilled at the beginning of the period using previous

inventory and actual completed products. The balance equation is

lit = Ii,t- + Pit - dit.

The ending inventory Iit is carried throughout period t and incurs holding cost of

hit per unit.
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Because of production lead times, certain variables defined above may be

eliminated from the model (or equivalently set to zero values as parameters) . For

example,
Pit = 0; i=l,...,N, 9 ,.,i

Also, let R, = T and Ri = R(i) - Lj(i) for i=2,...,N be the production horizon for

ifem i. Then production of item i in periods t>R i will be too late to be useful in

production of its parent item. Therefore,

Pit = 0; i=2,...,N, tfRi+l,...,T.

Finally, IiRi = 0 since allowing ending inventory will incur unnecessary holding

cost. Also, initial inventories are subtracted from the first period demands so that

IiO may be set to zero. Note that such net demands may be negative in value.

Then the LP for the SPILMRP model can be written as (LP1):

N Ri

minimize X X [hitlit + citPit
1=1 t=l

subject to li,t-l lit + Pit - miPj(i),t+Lj(i) dit; i-1,...,N

t-1,... ,Ri

Pit = 0; i=l,...,N, t--1,...,Li;

IiO = 0; IiRi = 0; i=1,...,N;

Pit -> 0;

Iit 2! 0; i=l,...,N; t=l,...,Ri.

Denote the constraint matrix in (LP1) by M and let its dimensions be m rows

by n columns.
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3. Triangularity of the Basis

Observe that although (LP1) consists of essentially flow-balance type

constraints, it is not a network LP. While the coefficients mi can be considered as

gain factors in a generalized network, the proportionality requirement on the

production of items supplying a common parent still needs to be expressed

separately. For formulations of this type of problems as networks with side

constraints, see e.g Chen and Engquist [2] ,Steinberg and Napier [ 8 1, and Zahorik

et al [ 10 ]. The allowance of nonzero initial inventories and lead times also

distinguishes (LPl) from Leontief substitution systems studied by Dantzig [ 3 ] and

Veinott [ 9 ]. However, the following result shows that (LP1) has a very important

network-like property, namely, that any basis can be triangularized. This was first

derived in [ 7 ] using a generalization of the concepts of network models. In this

paper we present a direct, algebraic proof.

Lcmma Given any m by m nonsingular submatrix B of the coefficient matrix

M in (LP1), there exists either a row with a single nonzero coefficient

(row singleton), or a column with a single nonzero coefficient

(column singleton).

Proof. We assume the assertion is false, and show that a nonzero vector n

exists for which ntB = 0, contradicting the non-singularity of B.

Consider a column of B corresponding to the variable lit. lit appears

in the inventory balance constraint of item i in period t with a coefficient of

+1; if the assertion is false, then it also appears in the inventory balance

constraint of item i in period t + 1 with a coefficient of -1. Now consider a

column of B corresponding to the variable Pit. Pit appears in the inventory

balance constraint of item i in period t with a coefficient of +1. To produce Pit

item i must withdraw the quantity mkPit at times t - Li from the inventory

balance constraints of item k in period t - Li with a coefficient of -mk.
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As a consequence of the above remarks ntB 0 if and only if

RIit It+ 1  0 (1)

Pit R Ik,t-Li mk =0 (2)

k E P(i)

where nIit (respectively nPit) is the component of 7r corresponding to the

column of B associated with the variable Iit (respectively Pit), and P(i)

denotes the set of items required in the production of item i (i.e. those having

item i as parent). (When the assertion is false, P(i) can never be empty; in

words, columns corresponding to production of those items which require no

other items as input can never be in the basis.) Let E denote the set of items i

which have a column corresponding to the variable Pit or lit in the basis. A

non-zero n satisfies (1) and (2) if a non-zero nt* exists which satisfies

t*-i  7 7rt*krk = 0; i R E. (3)

k e P(i)

(Equate itPit and 7tlit to 7t* i for each i e E and t.) Recursively, assign items to

"levels" as follows: assign item i to level 0 if P(i) = 0; for those items not yet

assigned, assign item i to level r if the level of each k e P(i) is no greater than r

-1. For each item i assigned to level 0 set 7t* i = 1. For each item i assigned to

level 1 set t* i = 7, it*k mk, etc. Continuing in this fashion a t* is

k e P(i)

determined which satifies (3).

0
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Theorem A basis in (LPI) can be transformed to a lower triangular matrix by
row and column permutations.

Proof. By the lemma, we can find either a row or a column singleton in the

basis. In the case of a ro A, singleton, permute the nonzero coefficient to the

upper diagonal. In the case of a column singleton, permute the nonzero to the

lower diagonal. Deleting the row and column corresponding to the singleton,

the remaining submatrix must also be nonsingular. Therefore, the same

procedure can be repeated until the basis is lower triangularized.

6



4. An Example

To illustrate, we use an example based on the product structure in Figure 1.

The production lead times in the following Table apply.

Item Production Lead Time (in number of time periods)
11

2

3 2

4

5

Table 1. Production Lead Times in the Example.

Figure 2 shows the constraint matrix for the single product, infinite loading MRP

model. A basis is examplified by the shaded columns of the matrix in Figure 3.

Note that except for illustration, there is no need to physically permute the

basis in triangularization. It suffices to identify a pivot sequence specifying which

row and column to use at each step of eliminating a variable from the system of

equations. The pivot sequence for the triangularization of the basis in Figure 3 is

displayed in the left-most column in the figure. The pivots are enclosed in circles.

The first pivot uses row one and column one, the second row two and column six,

the third row seven and column eleven, and so on.

With a triangular basis, the major operations in the Simplex Method are

greatly simplified. Both the computation of the simplex prices and the updating of a

column reduce to back-substitutions. It should be remarked that basis triangularity

in this case does not imply integer solutions as the mi's may appear on the diagonal.
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5. The Multi-Product Finite-Loading MRP Model

Most real production systems involve a multitude of finished products. The

assembly of these products and their parts requires production capacity at every

stage. When production capacities are limited, we have the finite-loading model.

For a survey, see Billington et al [ 1 ]. Suppose there -xe K types of capacities with

Sk4 units of type k available in time period t. Let aik be the unit requirement of type

k capacity in the production of item i. Then the LP for the Multi-Product

Finite-Loading MRP model (MPFLMRP) is (LP2) below.

N Ri

minimize{ hitit + citPit I
i-1 t--l

subject to N
I aikPit 5 Skt ; k+l,...,K; t---,...,T (LP2. 1)

i=l

Ii,t-1 - lit +Pit - miPj(i),t+Lj(i) = dit; i=l,...,N (LP2.2)

Pit = 0; i--1,...,N, t=l .... ,Li or t > Ri ;

IiO = 0; IiRi = 0; i=l,...,N;

Pit 0;

lit >0; i-1,...,N; t=l,...,Ri.

Here, the N items can be partitioned into mutually exclusive subsets, each

corresponding to a distinct finished product. Therefore (LP2) has the block-angular

structure with (LP2.1) as the coupling constraints and (LP2.2) decomposing into as

many independent blocks as there are finished products. In [ 7 ] McKenney proposed

to solve (LP2) using Dantzig-Wolfe decomposition [ 4 ]. Generalizing the concepts
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of networks, trees and paths, he devised a network-simplex type procedure to take

advantage of the triangular basis property of the subproblems.

Ongoing work in LP decomposition with parallel computers (Ho [5], Ho et al
[6]) will be specialized to solve (LP2). For a 10-period MRP system with 100
products, each with 100 parts, (LP2.2) alone will have on the order of 100,000
constraints and 200,000 variables. For this reason, most previous attempts to

MPFLMRP are deemed impracticable due to "prohibitive" computational
requirements (see, e.g. [8]). However, multicomputers having 2 n parallel

processors are becoming increasingly cost-effective. Currently, practical values of

n are already between 6 and 8 (i.e. 64 to 256 processors). The power of individual
processors is also well suited to handle the subproblem for one product (say, with

about 1,000 constraints) if one exploits the special property discussed in this paper.

Therefore, the implementation of Multi-Product, Finite-Loading Material
Requirements Planning systems on parallel computers should be an important

advance in production and operations management in the near future.
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Figure 1. Example of a Product Structure
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Figure 3. Pivot Sequence to Triangularize the Basis
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